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Abstract

The multiple scattering of a spherical acoustic wave from an arbitrary number of fluid spheres is
investigated theoretically. The tool to attack the multiple scattering problem is a kind of addition formulas
for the spherical wave functions, which are presented in the paper, based on the bicentric expansion form of
Green function in the spherical coordinates. For an arbitrary configuration of N fluid spheres, the kind of
addition formulas permits the field expansions (all referred to the center of each sphere). With these the
sound fields scattered by each sphere can be described by a set of N equations. The interactions between
any two fluid spheres are taken into account in these equations exactly and their coefficients are coupled
through double sums in the spherical wave functions. By truncating the infinite series in the equations
depending on certain calculation accuracy and solving the coefficients matrix by using the Gauss—Seidel
iteration method, we can obtain the scattered sound field by the configuration of the fluid spheres. Finally,
the scattering calculations by using the kind of addition formulas are carried out.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Acoustic scattering by multiple objects is an important problem with various practi-
cal applications. The simplest realistic problem of multiple scattering by finite bodies
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appears to be that by two spheres. Many publications on this subject can be found in
Refs. [1-6].

In 1967 Liang and Lo [1] considered the scattering of electromagnetic waves by two
spheres using a translational addition theorem by Stein [2] and Cruzan [3]. Even with the
help of several previous theoretical studies and the availability of high-speed computers, their
numerical evaluation had to be limited to the spheres of radii less than three quarters of
wavelength and wide spacing, due to the complexity of the addition theorem. Twersky [4]
considered a more general problem with many scatterers, using dyadic Green function approach.
Besides, Bruning and Lo [5] obtained an exact solution to the scattering of a plane electromagnetic
wave by two spheres using the translational addition theorems for vector spherical wave functions
given by Cruzan [3].

Recently, Gaunaurd et al. [6] used the addition theorems for the spherical wave functions to
consider two spheres insonified by plane waves at arbitrary angles of incidence.

More recently the backscattering of sound from two regularly arranged bubbles is studied
theoretically and experimentally by Kapodistrias and Dahl [7], whose scattering calculations are
carried out using a closed-form solution derived from the multiple scattering series.

In this paper a kind of addition formulas for the spherical wave functions by using the
bicentric expansion of Green function is presented first. Further, the multiple scattering
of a spherical acoustic wave from an arbitrary number of fluid spheres is considered. The
treatment of the multiple-scattering problem is analytical and exact. The kind of addition
formulas that we generate in the text is valid and important for the acoustic problem. The
accuracy of the solution depends on the accuracy used to determine the coefficients that appear
as the solutions of a series of infinite equations. Finally, the computing results are validated
by comparison to Fig. 8 in Ref. [7], which was obtained for backscattering from two
bubbles of radius 585 um at a frequency of 110kHz and variable distance between the centers
of each bubble.

2. Bicentric expansion of Green function in the spherical coordinates

The bicentric expansion form of Green function in the spherical coordinates was mentioned in
Refs. [8.,9]. Here, we present the bicentric expansion of Green function in detail.

The bicentric Green function in this paper is defined in the following non-homogeneous
Helmholtz’s equation:

(V2 + K?)G(r,, 15, Ry K) = 5(ry — 15 — Ryp), (1)

where K is the wavenumber of the medium. As shown in Fig. 1, o and f are the two different
centers and R,p denotes the distance between them. Let the origin of the spherical coordinate
system (r, 0, ) located at the center o and the coordinates of the point f are (Ryp, 05, @,p)
with reference to the origin a. A source point A is located at (r,,0,, ¢,) with reference to the
center o, and a field point B is at (rg,0p, @p) with reference to f. The bicentric expansion
form of Green function G(r,,rpg, Ryp; K) is derived in detail in Appendix A. Therefore only the
final form is listed here.



J.H Wu et al. | Journal of Sound and Vibration 290 (2006) 17-33 19

Fig. 1. The relation among r,, rz and Ryg.

The bicentric expansion form of Green function has different forms in three different regions,
ie.

(A) ry + VﬁgRa[ﬁ’
Gy 15, Rops K) = iKY~ Y FU) (KRup)jy(Kr)jp (Krp) Y im0, 0,) Y5, Op. 0p), (2)
L L

where L= (I,m) and 3, = 3272, __, and

FOLKRyg) =D an(= )i 0 (LLYA (KRup) Yo (01, 0,p), 3)
L//

U 1" 1/2 / 7z / 1
QL/,(L,)Z(_I)M[(zerl)(zz+1)(21+1)} <l ! 1)(1 Il ) @

4n 0 0 O -m m —m"

J; and h}l) are the spherical Bessel function and the first kind spherical Hankel function,
respectively. The spherical harmonic Y, (0, ¢) is given by

20+ 1(1 — m)!

Pl'(cos 0)e™  (m=0,=%1,...,4), (5)
where P}" is the associated Legendre function. Y3, is the complex conjugate of Y.
<j1 Jr s )
my mp m;
in expression (3) is the Wigner (3-/) symbol.

(B) rg+ Rulg <ry,
G (1, Ry K) = 1KY Y FE) (KRS (Kr)jy (Kig) Y (0, 0,) Y5, (05, 0p). (6)
L L



20 J.H Wu et al. | Journal of Sound and Vibration 290 (2006) 17-33

where
FOL(KRy) = 4n(=Di™ 0 (LL)jp (KRup) Y5, (Oups 9,p). (7)

L//
(C) 1y + Ryp<ryp

G (v g, Rop; K) = iKY > F 2L (KR (Kr)H (Krg) Y (0, 9,) Y7, (O, 05)- - (8)
L L

Let R,3 — 0. Then the following classical expansions of Green function can be obtained from
the above expansion forms of G' and G, respectively:

@ r=r, GO r)=iK > W (Kn)j(Kr)Y (0, ) Y}, (0, @), )
L

(b) r<r, GO(e,¥)=iK Y j(Kr)h (Kr') Y 1(0,9) Y},(0', ¢). (10)
L

3. A kind of addition formulas for the spherical wave functions

As shown in Fig. 2, O is the origin of the spherical coordinate system (r, 0, ¢), and a point
sound source is located at A(r, 01, ¢;), and the coordinates of a field point B are (ry, 0, ¢,) With
reference to the center O;. Because of

ro =Ry + 12, oy
Green function can be expressed as

eiKIr—rol eiKIr—r2—Ry|

G(l‘(), 1‘1) == = G(r1,r2>R12;K)' (12)

dn|r; —ro|  4mlr; —ry — Ry

Fig. 2. Sketch of vector analysis.
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On the other hand, G(ry,r;) can be expanded into the following series forms:

iK S KK )i (Kro) Y (01, 0) Y, (00, 00),  ro<ri,
L

G(ro,11) = (13)

iKY j (KA (Kro) Y (01, 00) Y, (00, 00),  ro>r1.
L

According to the orthotropic character of Y,, the following addition formulas can be obtained
from expressions (2), (6), (8) and (13).

(a) When r, <Ry,
W(Kro) Y5, (00, 00) = > > 4n(=1)i*"*"" 0, (LL)

L/ L//
) H (KR )iy (Kr2) Y (012, 019) Y5, (02, 02), (14)

where

ro = \/R%2 + 13 + 2Ry2r3 €08 7,
cos 7 = cos 012 cos 0 + sin 015 sin 02 cos(p |, — @»).

(b) When Ri><r»,
WP(Kro) Y5, (00, 00) = > > dn(=1)i*"*" 0, (LL)
L L’
Xjp (KRN (Kr2) Y, (012, 915) Y (02, 0). (15)

(c) For any r; and Ry,
JUKr) Y (00, 00) = > > dn(=1)i""*" 0, (LL)

J
Xj(KRy2)jy(Kra) Y7'n1r/(912= ®12) Y}*,m,(QZ’ ®y). (16)

Expressions (14)—(16) are a kind of addition formulas presented for the spherical wave functions.

In Appendix B, we can derive from Eqgs. (14)-(16) the expansions for the spherical wave
functions A{"(Krg)P""(cos 0p) exp(imep,) and j,(Kro)P"(cos 0p) exp(ime,), which are in full
agreement with the previous derivation by another method in Ref. [10]. However, the form of
the addition formulas (14)—(16) is more suitable for dealing with the multiple-scattering problem
here.
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4. Sound scattering from an arbitrary number of fluid spheres

The geometry for sound scattering of a spherical wave by an arbitrary number of spheres is
shown in Fig. 3. This is a combined system with N fluid spheres, whose centers Oy, O, ..., Oy are
positioned by ry,rp,...,r,, ..., K. .., T, respectively. The radius of the gth sphere is a,
(g=1,2,...,N). The coordinates of a field point B are r(r, 0, ¢) with reference to the origin O
and are ry(r;, 9;, @) 10 Oy(ry, 0y, ¢,). Provided there is a point sound source with unit strength
located at a point A, whose coordinates are ro(ro, 0o, @), we calculate the scattered sound pressure
at B by the combined system.

The free sound field Py(r, ry) generated by the point sound source can be easily got according to
expression (13),

iKY j (KR (Kro) Y (0, 9) Y5, (00, 0)s  Fo>T,
L

Po(r,r) = ¢ . . . (17)
iK S WP (Kr)ji(Kro) Y im(0. 9) Y5, (00, @g), o<
L
The scattering sound field from the combined system can be expressed as
N
Psc(r,rg) = Y Py(r)), (18)
q=1
where
Py(x) =Y CPHP(Kr) Y (0. 0,), (19)

L

where C(Lq) (g=1,2,...,N) are the coefficients to be determined from the boundary conditions
and hgz) is the second kind spherical Hankel function.

Fig. 3. The geometry for sound scattering by an arbitrary number of spheres.
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Since the addition formulds (14) and (15) are expanded into the series in terms of h( ) Y3, whose
complex conjugate is h )Y 1m, and the free sound field Py(r,19) in Eq. (17) is expanded 1nto the
form of Y/, the scattered field in Eq. (19) can be expanded into the series in terms of h Y. to
get the consistent form with the incident field.

In order to expand the sound field—all referred to the center of the gth sphere—the above
addition formulas need to be applied in the triangle BOsO,. Because all these spheres are non-
overlapped, a, + a,<r,. Considering the boundary conditions, we can get from expression (14)
that

WKL) Y 10, 0) = > ) dn(=1) (=)™ 0 (LL)

L/ L//
W (Krgs)ji (KLY Y 110 (Ogs, @43) Y 1, (0, 00, (20)

or

WK Y (0 9) = >3 an(=1)(=)*"*" 0, (LL)

L/ L//
2 . /
s hD(Krgs)jr (K Y pr (0 = Ogs, T+ 94) Y 1 (01, 0. 1)

For the triangle OBO,, if ro>r the addition formula (16) can be used, or else when r<r,
expression (21) can be used and when r>r, expression (15) can be used. Here, we only consider
the situation ro>r, and the other situations can be dealt with in the same way. Thus,

Po(r,ro) =Y > Grjp(Kr) Y 1, (0, 0,), (22)
L L

where

G = iKh"(Kro) Y, (90,%)2 (=1 (=) QUALL Y (Kr) Yy (O 0. (23)

Besides, the internal sound field of the gth sphere can be expressed as

POW) =" A5 (K r) Y0, 0], (24)
L

where K, is the wavenumber in the sound space inside the gth fluid sphere.
According to the continuous conditions of the stress and displacement on the boundary of the
gth sphere, the following equations can be obtained:

ooy = PR 0, (25)
L o(Porr) + Psc(ero)| 1 PP 26)
iwpg or, L iwp,  or, ’

¢=Yq rq_aq



24 J.H Wu et al. | Journal of Sound and Vibration 290 (2006) 17-33

1.e.,
5 N
JrKa) Y Gy + CONP(Kap) + >3 O Tpju(Kay) = A7) (K a,), 27)
L e
N
Ky ka )Y G+ CORY (Ka) + 33" COT i (Kay) | = Ko 491 (koa)., (28
26 Jr\hag 4 L 'y q apa LAy _Pq ' Jr&qlq),
S#q
where

Tp=> 4n(—D/ (=" O (LL YA (Krgs) Y (1 — Ogs, 7+ ) (29)
<

and p,, is the medium density inside the gth fluid sphere. We can eliminate A(Lq,) from the above two
equations and get

N
COMP+3 N TpMP =-MP>" G (g=1,2,...,N), (30)
L L
where
. . K, . K
MY = jp(Kag)jy (K a) =2 — ji(Kag)jy (K yag) — 31)
pq Po
. K : , K
MP = KD (Kay)jy (K ga,) =L — K (Kag)jy (K gaq) —, (32)
pq pO
. . K, | . K
ME?) =],/(Kas)]}(anq)p—q —]}(Kas)],(anq)p—. (33)
q 0

Because the superscript ¢ can be taken for any integer from 1 to N and /' is variable from 0 to
oo, formula (30) is a series of equations with infinite dimensions C(Lq,) JIET, ,l”:_, is close
enough to >, = Z}’iOZf%:_, depending on the calculation accuracy, the number of the
coefficients to be determined is (n; + 1)>N. When the superscript ¢ ranges from 1 to N and /' from
0 to ny, we can obtain the same number of equations. The coefficients C(Lq,) can be determined by
solving these equations, and the calculation precision can be improved by increasing »;. In this
paper, we have used the Gauss—Seidel iteration method to solve these equations.

According to expressions (18) and (19), the coefficients obtained from Eq. (30) bring the exact
solution for the scattering sound field of the combined system by accounting for all interactions
between any two spheres.

Every term in Eq. (30) has a specific physical meaning. The free term determines the scattering
of a spherical wave by a single sphere without considering the multiple scattering. The double
sums denote the interactions between any two spheres, in which hg,z,)(qus) in the factor T~ is
relative to the distance between the two spheres O, and O,. And T'; is decreased with increasing
Kr,s, which indicates that the corresponding interactions become smaller.
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5. Numerical simulation and discussions

In Ref. [7] the backscattering of sound from two regularly arranged bubbles is studied
theoretically and experimentally. According to Ref. [7], the numerical results for the
backscattering from the pair of bubbles can be reported in terms of target strength (TS), which
is defined by

TS — 1011 prl* R 34
= 101og( (3 Ko ). (34)
nc

where p is the total scattered pressure at the receiver from the pair of bubbles, p;,. is the incident
pressure at the bubbles and Rgg is the distance from the bubbles to the receiver.

According to expressions (30) and (34), we calculate the target strength (TS) for the
backscattering from two bubbles of radius 585um at a frequency of 110kHz and variable d,
which is the distance from the combined beam axis to the center of each bubble. The computed
results, as shown in Fig. 4, were first validated by comparison to Fig. 8 in Ref. [7], which is
obtained by using an exact, closed-form solution derived from the multiple scattering series. The
oscillatory behavior is brought about by the interference of the waves scattered between the
bubbles, and the straight dashed line represents the coherent scattering from the two identical
bubbles without considering the interference between them. This result is in agreement with that
in Ref. [7] except that the discrepancy of about 1 dB between them, which is caused by numerical

-57

Coherent scattering

Target Strength [dB]

-62 -

. I . I . I . I . I .
0 5 10 15 20 25 30
Kd

Fig. 4. Theoretical curve for backscattering from two bubbles of radius 585um at a frequency of 110kHz versus
variable distance d. The plot is generated by an analytical and exact method. It agrees very well with the theoretical
result in Ref. [7, Fig. §].
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calculation with different methods, and may be improved further by increasing the calculation
accuracy.

Next, we calculate the target strength (TS) for the backscattering from two bubbles of radius
585 um with the distance R = 0.02m and plot it versus variable frequency in Fig. 5. Here the

o
S
<
IS}
C
e
@
©
o
©
n | n | n
0 50 100 150

(a) Frequency [kHz]

-56

-58 —X/,//—\
= L
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£
2 -60 -
e
>
= L
2
©

-62

-64 L | L

50 100 150

(b) Frequency [kHz]

Fig. 5. Theoretical curve for backscattering from two bubbles of radius 585 um versus variable frequency. Graph (b) is
a detail of graph (a).
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source and receiver are collocated at the same position and the distance from the source to set of
bubbles is Ry = 0.58 m. In Fig. 5 graph (b) is a detail of graph (a) and there is a small-amplitude
oscillation in the frequency range 50-150kHz in graph (b), which is coincident with Twersky’s
expression [11].

Besides, we also generate the target strength (TS) versus KR in Fig. 6. Here Ry is the distance
from the source to the set of bubbles, K = 110kHz and the distance between the two bubbles
R =0.02m. Fig. 6 shows that TS tends to a constant when Ry is bigger than 0.05m.

When the source and receiver are collocated at the same position, the two most important cases
for the scattering from two bubbles are the backscattering, in which the source is perpendicular to
the line along the centers of the two bubbles, and the end-on scattering, in which the source is on
the drawn-out line along the centers of the two bubbles. The first case has already been plotted in
Fig. 4, and we plot the second case in Fig. 7 at a frequency of 110kHz, with the dashed line
representing the TS value as the end-on scattering by the nearer bubble from the receiver. In Fig. 4
the solid line oscillates around the dashed line, and at the larger separations (i.e., d>0.065m
dashed and solid lines coincide. Meanwhile, in Fig. 7 some difference between the two lines is still
observable at the large separations. Figs. 4 and 7 also show that the interactions between the two
bubbles become weaker as the distance R between the centers of the two bubbles increases. When
the distance R increases to some extent, the end-on scattering by the two bubbles will be close to
the scattering only by the nearer bubble from the receiver.

At last, the multiple scattering of a spherical acoustic wave from an arbitrary number of spheres
is further considered. For an arbitrary configuration of N fluid spheres, a set of N equations can

-40

TS[dB]

-85 L | L | L | L |
0 10 20 30 40

KR,

Fig. 6. Theoretical curve for backscattering from two bubbles of radius 585 um versus variable distance R, from the
source to set of bubbles at a frequency of 110 kHz.
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Fig. 7. Theoretical curve for end-on scattering from two bubbles of radius 585 um at a frequency of 14 kHz versus
variable distance d when the source is on the drawn-out line between the centers of the two bubbles.

be obtained by using Eq. (30). The interactions between any two fluid spheres are taken
into account in these equations exactly and their coefficients are coupled through double
sums in the spherical wave functions. By truncating the infinite series in the equations
depending on certain calculation accuracy, and solving the coefficients matrix by using the
Gauss—Seidel iteration method, we can obtain the scattered sound field by the configuration of the
fluid spheres.

Here, we deal with three fluid spheres for an example. As shown in Fig. 8, three bubbles By, B>,
and B; with the same radius 585 um are aligned by separation of d. The source and receiver are
collocated at the same position Ry and the distance from the source to set of bubbles is still
Ry =0.58m.

For the three bubbles, three equations with respect to the scattering coefficients Cg],) (g=1,2,3,
and L' = (I',m')) can be got from Eq. (30). These are a set of equations with infinite dimensions.
Here, we truncate the infinite series with n; = 20. Thus the number of the scattering coefficients to
be determined is 3 x 212. When /' ranges from 0 to #; for every equation, we can obtain the same
number of equations. The coefficients C(Lq,) can be determined by solving these equations with the
Gauss—Seidel iteration method.

In order to compare the numerical result of three-bubble cluster with that of two-bubble one,
target strength (TS) in Eq. (34) is also used. However, here p; is the total scattered pressure at the
receiver from the three bubbles, p;,. is the incident pressure at the bubbles B, and Bs, and Rpg is
the distance from the bubble B, or Bz to the receiver.

Theoretical curve of the target strength for backscattering from three bubbles of radius 585 um
at a frequency of 110kHz versus variable distance d is plotted in Fig. 9, in which the straight
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Fig. 8. Geometry of the backscattering from three bubbles (not to scale).

dashed line represents the coherent scattering from the three identical bubbles without considering
the interference between them. On the whole, the behavior of the three-bubble cluster is similar to
the two-bubble one, but the amplitude of the fluctuations of the interactive scattering is now
somewhat greater.

6. Conclusions

Based on the bicentric expansion form of Green function in the spherical coordinates, we have
presented the kind of addition formulas for the spherical wave functions and solved the problem
of the multiple scattering of a spherical acoustic wave by an arbitrary number of fluid spheres. The
kind of addition formulas allows us to express the exact analytical solution as an infinite set of
equations, all referred to the center of each sphere. The accuracy of the solution will depend on
the accuracy used to determine the coefficients of the equations. Numerical calculations were
performed to validate the kind of addition formulas for the spherical wave functions. The exact
approach can also be extended to the cases of the sound scattering by an arbitrary number of
elastic spheres.
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-53

Target Strength [dB]

Kd

Fig. 9. Theoretical curve for backscattering from three bubbles of radius 585um at a frequency of 110 kHz versus
variable distance d. The straight dashed line represents the coherent scattering without considering the interference
between them.

Appendix A

In this appendix the bicentric expansion form of Green function of non-homogeneous
Helmholtz equation in the spherical coordinates is derived.
It is known that Green function of Helmholtz equation can be expressed as [9]

eldT—1p—Ryp)

G(ra,rﬁ;Roc[f;K) = - (27_5)3

Substituting the following expansion form of plane wave into the integrand of expression (A.1):

o0 !
elql‘cosg =4r Z ll]l(qr) Y}km(eq, (pq) Ylm(Hry (Pz) (Az)
=0 m=-I

and applying the following integral formula [9]:
0r (1) = [ Y3000 Y1 Ors0) Y (0,0, 5in 0,00, do,

' " 1/2 Ji l/ l// / l/ l//
_ 1y [(21+ DRI+ DRI+ 1)] < )( ) a3

4r 0O 0 O —-m m —m
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we can obtain that
G s, Ry K) =83 N S (=)™ 0, (L)
L L/ L//
XFll/l”(rdh rg, RO’,B; K) Ylm(QOh (po() Y?’m/(eﬁa (pﬁ) Y}k’/m”(eocﬂ’ (paﬁ)’ (A4)

where ( is the angle between vector q(q, 0,, ¢,) and vector r(r, 0, ¢,), and the radial coefficient is
given by

00 d 2 . r . , ;/' . . R
Fyp(ra,rp, Ryg; K) = / qq771(qr,)ir(qrg)ir(gR,p) ’ (AS5)

0 ¢ — K’
where [, I’ and [” are restricted by Wigner (3-j) symbol [13] and satisfy the following conditions:

[+ 1+ 1" = even (non-negative), (A.6)
U= l\<l'<I+ 1, I —1\<I<I+ 1", [ ="\ <I<I +1". (A7)

The integral in Eq. (A.5) has different results in the three non-overlapping regions r, 4+ rp < Rz,
rg+ Ra/g <ry and r, + Raﬁ <rg.

In the region r,, + rg < R,p, the integral in Eq. (A.5) can be calculated by applying the following
contour integral:

. . (@))
7{ dgq?jiar.)ir(qrphy’ (GRyg) _ 0. (A.8)
Cy

¢ — (x+1iy)’
where x and y (y>0) are the real numbers and the contour C; is shown in Fig. A.1.

Because ¢ = x + 1y must be a first-order singular point of the integrand in Eq. (A.8), the
theorem of residues can be applied directly here.

—

0 ‘Reg

Fig. A.1. Sketch of the contour of the non-overlapping region.
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Besides, considering the following condition:

aIiar (@i (aRyg)
¢ = (r+ip)

0 ifg—> o0 (A9)

and the parity characters of the spherical function j, and the second kind spherical Bessel
function and Eq. (A.6), we can obtain the following result from Eq. (A.8) by using the theorem
of residues,

/oo dq ¢*ji(qr,)jr(qrp)jy(qR,p) .
0

e i) 2 Co (G 4+ )iy (e + D (G + ) Rop). - (A10)

Let K = x + 1y, then

i

Fyp(ra,rp, Ryp; K) = >

Kj((Kr,)jp (Krg)h) (KRyp). (A.11)
Therefore, G(r,,rg, Ryp; K) in the region r, 4+ rg <R, can be obtained by (A.4).

It is easy to find that the difference between the regions rg + Ry <r, and r,, + rg< R,p is only to
exchange the positions of r, and R,p, and the difference between the regions r, + R,p<rp and
o + 1p<R,p 1s the exchange of rg and R,p. Therefore, G(r,, rg, R,g; K) in the different regions can
be obtained.

Besides, the radial coefficient of the expansion forms in the region boundary is proved to be
continuous by applying the recursion method in Ref. [9].

Appendix B

The expansions for the spherical wave functions hgl)(Kro)PZ'(cos 0o) exp(imgp,) and
Ji(Kro) P} (cos 0y) exp(im¢,) have been obtained in Ref. [10] as follows:

Ji(Kro)Py'(cos ) expimp) = Y >~ (i@l + DI, 1w Da(iml, 1m|: p, 1)

L V4
xJ(KR12)jy (Kra) Py 4™ (cos 012) P} (cos 02)
x expli(m + m')py] exp(—in'@,)}, (B.1)

P (Kro) Py (cos 0) exp(imp) = > > (i 71 + DI, ' Ya(jm], 1m|; p, 1, 1)
L p

< h(Kr2)jp (Kr )Py (cos 012) Py (cos )
x expli(m + m') @, exp(—im'p,)}, (B.2)
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where, p=1'+1I'+1-2,...,I' = [, r- = min(R3,7;), >~ = max(R;»,72), and

4+ =p=DN2p+1)
+p—1MT +p—DNp+1'+1+ 1N

a(lml, |m'|;p,1,I') =

P p
x> expl{ll+p—1)/2+ |m| +J’]ni}< . >{1, —j — ImIM{l', Im| +j — p},
/=0 / (B.3)

where, p=p — |m| — ||, ' = I<p<I' +1,(s)!! =s(s —2)(s—4)---20r 1,and (O)!! = (=)' = 1.
According to expression (5) and the following relationships [12]:

= (=" Y, (B.4)
[ —m)!
P (x) = (=1)" EH—',Z;, P (x) (B.5)

and [13]

, I (! + m)(p — m — m')"?

( o p ) (1 l/ p)
X , (B.6)
m m —(m+m) 0 0 O

applying the character of Wigner (3-/) symbol, we can then derive expansions (B.1) and (B.2) from
the addition formulas (14)—(16). Meanwhile, this will validate the kind of broad addition formulas
presented in this paper, based on the bicentric expansion form of Green function in the spherical
coordinates.
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