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Abstract

The multiple scattering of a spherical acoustic wave from an arbitrary number of fluid spheres is
investigated theoretically. The tool to attack the multiple scattering problem is a kind of addition formulas
for the spherical wave functions, which are presented in the paper, based on the bicentric expansion form of
Green function in the spherical coordinates. For an arbitrary configuration of N fluid spheres, the kind of
addition formulas permits the field expansions (all referred to the center of each sphere). With these the
sound fields scattered by each sphere can be described by a set of N equations. The interactions between
any two fluid spheres are taken into account in these equations exactly and their coefficients are coupled
through double sums in the spherical wave functions. By truncating the infinite series in the equations
depending on certain calculation accuracy and solving the coefficients matrix by using the Gauss–Seidel
iteration method, we can obtain the scattered sound field by the configuration of the fluid spheres. Finally,
the scattering calculations by using the kind of addition formulas are carried out.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Acoustic scattering by multiple objects is an important problem with various practi-
cal applications. The simplest realistic problem of multiple scattering by finite bodies
see front matter r 2005 Elsevier Ltd. All rights reserved.
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appears to be that by two spheres. Many publications on this subject can be found in
Refs. [1–6].
In 1967 Liang and Lo [1] considered the scattering of electromagnetic waves by two

spheres using a translational addition theorem by Stein [2] and Cruzan [3]. Even with the
help of several previous theoretical studies and the availability of high-speed computers, their
numerical evaluation had to be limited to the spheres of radii less than three quarters of
wavelength and wide spacing, due to the complexity of the addition theorem. Twersky [4]
considered a more general problem with many scatterers, using dyadic Green function approach.
Besides, Bruning and Lo [5] obtained an exact solution to the scattering of a plane electromagnetic
wave by two spheres using the translational addition theorems for vector spherical wave functions
given by Cruzan [3].
Recently, Gaunaurd et al. [6] used the addition theorems for the spherical wave functions to

consider two spheres insonified by plane waves at arbitrary angles of incidence.
More recently the backscattering of sound from two regularly arranged bubbles is studied

theoretically and experimentally by Kapodistrias and Dahl [7], whose scattering calculations are
carried out using a closed-form solution derived from the multiple scattering series.
In this paper a kind of addition formulas for the spherical wave functions by using the

bicentric expansion of Green function is presented first. Further, the multiple scattering
of a spherical acoustic wave from an arbitrary number of fluid spheres is considered. The
treatment of the multiple-scattering problem is analytical and exact. The kind of addition
formulas that we generate in the text is valid and important for the acoustic problem. The
accuracy of the solution depends on the accuracy used to determine the coefficients that appear
as the solutions of a series of infinite equations. Finally, the computing results are validated
by comparison to Fig. 8 in Ref. [7], which was obtained for backscattering from two
bubbles of radius 585mm at a frequency of 110 kHz and variable distance between the centers
of each bubble.
2. Bicentric expansion of Green function in the spherical coordinates

The bicentric expansion form of Green function in the spherical coordinates was mentioned in
Refs. [8,9]. Here, we present the bicentric expansion of Green function in detail.
The bicentric Green function in this paper is defined in the following non-homogeneous

Helmholtz’s equation:

ðr2
a þ K2ÞGðra; rb;Rab;KÞ ¼ dðra � rb � RabÞ, (1)

where K is the wavenumber of the medium. As shown in Fig. 1, a and b are the two different
centers and Rab denotes the distance between them. Let the origin of the spherical coordinate
system ðr; y;jÞ located at the center a and the coordinates of the point b are ðRab; yab;jabÞ

with reference to the origin a. A source point A is located at ðra; ya;jaÞ with reference to the
center a, and a field point B is at ðrb; yb;jbÞ with reference to b. The bicentric expansion
form of Green function Gðra; rb;Rab;KÞ is derived in detail in Appendix A. Therefore only the
final form is listed here.
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Fig. 1. The relation among ra, rb and Rab.

J.H. Wu et al. / Journal of Sound and Vibration 290 (2006) 17–33 19
The bicentric expansion form of Green function has different forms in three different regions,
i.e.
(A)
 ra þ rbpRab

GIðra; rb;Rab;KÞ ¼ iK
X

L

X
L0

F
ð1Þ
LL0
ðKRabÞjlðKraÞjl0 ðKrbÞY lmðya;jaÞY

�
l0m0 ðyb;jbÞ, (2)
where L � ðl;mÞ and
P

L ¼
P1

l¼0

Pl
m¼�l and

F
ð1Þ
LL0
ðKRabÞ ¼

X
L00

4pð�1Þlilþl0þl00QL00 ðLL0Þh
ð1Þ

l00
ðKRabÞY

�
l00m00 ðyab;jabÞ, (3)

QL00 ðL
0Þ ¼ ð�1Þm

ð2l þ 1Þð2l0 þ 1Þð2l00 þ 1Þ

4p

� �1=2 l l0 l00

0 0 0

 !
l l0 l00

�m m0 �m00

 !
, (4)

jl and h
ð1Þ
l are the spherical Bessel function and the first kind spherical Hankel function,

respectively. The spherical harmonic Y lmðy;jÞ is given by

Y lmðy;jÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1

4p
ðl �mÞ!

ðl þmÞ!

s
Pm

l ðcos yÞe
imj ðm ¼ 0;�1; . . . ;�lÞ, (5)

where Pm
l is the associated Legendre function. Y �lm is the complex conjugate of Y lm.

j1 j2 j3

m1 m2 m3

 !

in expression (3) is the Wigner (3-j) symbol.
(B)
 rb þ Rabpra

GIIðra; rb;Rab;KÞ ¼ iK
X

L

X
L0

F
ð2Þ
LL0
ðKRabÞh

ð1Þ
l ðKraÞjl0 ðKrbÞY lmðya;jaÞY

�
l0m0 ðyb;jbÞ, (6)
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where

F
ð2Þ
LL0
ðKRabÞ ¼

X
L00

4pð�1Þl ilþl0þl00QL00 ðLL0Þjl00 ðKRabÞY
�
l00m00 ðyab;jabÞ. (7)
(C)
 ra þ Rabprb

GIIIðra; rb;Rab;KÞ ¼ iK
X

L

X
L0

F
ð2Þ
LL0
ðKRabÞjlðKraÞh

ð1Þ

l0
ðKrbÞY lmðya;jaÞY

�
l0m0 ðyb;jbÞ. (8)
Let Rab! 0. Then the following classical expansions of Green function can be obtained from
the above expansion forms of GII and GIII, respectively:

ðaÞ rXr0; Gð1Þðr; r0Þ ¼ iK
X

L

h
ð1Þ
l ðKrÞjlðKr0ÞY lmðy;jÞY �lmðy

0;j0Þ, (9)

ðbÞ rpr0; Gð2Þðr; r0Þ ¼ iK
X

L

jlðKrÞh
ð1Þ
l ðKr0ÞY lmðy;jÞY �lmðy

0;j0Þ. (10)

3. A kind of addition formulas for the spherical wave functions

As shown in Fig. 2, O1 is the origin of the spherical coordinate system ðr; y;jÞ, and a point
sound source is located at Aðr1; y1;j1Þ, and the coordinates of a field point B are ðr0; y0;j0Þ with
reference to the center O1. Because of

r0 ¼ R12 þ r2, (11)

Green function can be expressed as

Gðr0; r1Þ ¼
eiKjr1�r0j

4pjr1 � r0j
¼

eiK jr1�r2�R12j

4pjr1 � r2 � R12j
¼ Gðr1; r2;R12;KÞ. (12)
r1 r0 r2

O2
R12

O1

�1 �0 �12

�2

�12

A

B

Fig. 2. Sketch of vector analysis.
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On the other hand, Gðr0; r1Þ can be expanded into the following series forms:

Gðr0; r1Þ ¼

iK
P
L

h
ð1Þ
l ðKr1ÞjlðKr0ÞY lmðy1;j1ÞY

�
lmðy0;j0Þ; r0or1;

iK
P
L

jlðKr1Þh
ð1Þ
l ðKr0ÞY lmðy1;j1ÞY

�
lmðy0;j0Þ; r04r1:

8>><
>>: (13)

According to the orthotropic character of Y lm, the following addition formulas can be obtained
from expressions (2), (6), (8) and (13).
(a)
 When r2pR12,

h
ð1Þ
l ðKr0ÞY

�
lmðy0;j0Þ ¼

X
L0

X
L00

4pð�1Þl ilþl0þl00QL00 ðLL0Þ

�h
ð1Þ

l00
ðKR12Þjl0 ðKr2ÞY

�
l00m00 ðy12;j12ÞY

�
l0m0 ðy2;j2Þ, ð14Þ
where

r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

12 þ r22 þ 2R12r2 cos g
q

,

cos g ¼ cos y12 cos y2 þ sin y12 sin y2 cosðj12 � j2Þ.
(b)
 When R12pr2,

h
ð1Þ
l ðKr0ÞY

�
lmðy0;j0Þ ¼

X
L0

X
L00

4pð�1Þlilþl0þl00QL00 ðLL0Þ

�jl00 ðKR12Þh
ð1Þ

l0
ðKr2ÞY

�
l00m00 ðy12;j12ÞY

�
l0m0 ðy2;j2Þ. ð15Þ
(c)
 For any r2 and R12,

jlðKr0ÞY
�
lmðy0;j0Þ ¼

X
L0

X
L00

4pð�1Þl ilþl0þl00QL0 ðLL0Þ

�jl00 ðKR12Þjl0 ðKr2ÞY
�
l00m00 ðy12;j12ÞY

�
l0m0 ðy2;j2Þ. ð16Þ
Expressions (14)–(16) are a kind of addition formulas presented for the spherical wave functions.
In Appendix B, we can derive from Eqs. (14)–(16) the expansions for the spherical wave

functions h
ð1Þ
l ðKr0ÞP

m
n ðcos y0Þ expðimj0Þ and jlðKr0ÞP

m
n ðcos y0Þ expðimj0Þ, which are in full

agreement with the previous derivation by another method in Ref. [10]. However, the form of
the addition formulas (14)–(16) is more suitable for dealing with the multiple-scattering problem
here.
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4. Sound scattering from an arbitrary number of fluid spheres

The geometry for sound scattering of a spherical wave by an arbitrary number of spheres is
shown in Fig. 3. This is a combined system with N fluid spheres, whose centers O1;O2; . . . ;ON are
positioned by r1; r2; . . . ; rq; . . . ; rs; . . . ; rn, respectively. The radius of the qth sphere is aq

ðq ¼ 1; 2; . . . ;NÞ. The coordinates of a field point B are rðr; y;jÞ with reference to the origin O
and are rqðr

0
q; y
0
q;j
0
qÞ to Oqðrq; yq;jqÞ. Provided there is a point sound source with unit strength

located at a point A, whose coordinates are r0ðr0; y0;j0Þ, we calculate the scattered sound pressure
at B by the combined system.
The free sound field P0ðr; r0Þ generated by the point sound source can be easily got according to

expression (13),

P0ðr; r0Þ ¼

iK
P
L

jlðKrÞh
ð1Þ
l ðKr0ÞY lmðy;jÞY �lmðy0;j0Þ; r04r;

iK
P
L

h
ð1Þ
l ðKrÞjlðKr0ÞY lmðy;jÞY �lmðy0;j0Þ; r0or:

8>><
>>: (17)

The scattering sound field from the combined system can be expressed as

PSCðr; r0Þ ¼
XN

q¼1

Pqðr
0
qÞ, (18)

where

Pqðr
0
qÞ ¼

X
L

C
ðqÞ
L h
ð2Þ
l ðKr0qÞY lmðy

0
q;j
0
qÞ, (19)

where C
ðqÞ
L ðq ¼ 1; 2; . . . ;NÞ are the coefficients to be determined from the boundary conditions

and h
ð2Þ
l is the second kind spherical Hankel function.
Os  

Oq  

r

rq

rs

rqs  
rq  

O
x  

y

z
r0

A

B  

O1  

 .ON

′

rs′

Fig. 3. The geometry for sound scattering by an arbitrary number of spheres.
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Since the addition formulas (14) and (15) are expanded into the series in terms of h
ð1Þ
l Y �lm, whose

complex conjugate is h
ð2Þ
l Y lm, and the free sound field P0ðr; r0Þ in Eq. (17) is expanded into the

form of Y lm, the scattered field in Eq. (19) can be expanded into the series in terms of h
ð2Þ
l Y lm to

get the consistent form with the incident field.
In order to expand the sound field—all referred to the center of the qth sphere—the above

addition formulas need to be applied in the triangle BOSOq. Because all these spheres are non-
overlapped, as þ aqprqs. Considering the boundary conditions, we can get from expression (14)
that

h
ð2Þ
l ðKr0qÞY lmðy

0
q;j
0
qÞ ¼

X
L0

X
L00

4pð�1Þlð�iÞlþl0þl00QL00 ðLL0Þ

�h
ð2Þ

l00
ðKrqsÞjl0 ðKr0qÞY l00m00 ðyqs;jqsÞY l0m0 ðy

0
s;j
0
sÞ, ð20Þ

or

h
ð2Þ
l ðKr0sÞY lmðy

0
s;j
0
sÞ ¼

X
L0

X
L00

4pð�1Þlð�iÞlþl0þl00QL00 ðLL0Þ

�h
ð2Þ

l00
ðKrqsÞjl0 ðKr0sÞY l00m00 ðp� yqs; pþ jqsÞY l0m0 ðy

0
q;j
0
qÞ. ð21Þ

For the triangle OBOq, if r04r the addition formula (16) can be used, or else when rprq

expression (21) can be used and when r4rq expression (15) can be used. Here, we only consider
the situation r04r, and the other situations can be dealt with in the same way. Thus,

P0ðr; r0Þ ¼
X

L

X
L0

GL00 jl0 ðKr0qÞY l0m0 ðy
0
q;j
0
qÞ, (22)

where

GL00 ¼ iKh
ð1Þ
l ðKr0ÞY

�
lmðy0;j0Þ

X
L00

4pð�1Þlð�iÞlþl0þl00QL00 ðLL0Þjl00 ðKrqÞY l00m00 ðyq;jqÞ. (23)

Besides, the internal sound field of the qth sphere can be expressed as

P
ðqÞ
in ðr

0
qÞ ¼

X
L

A
ðqÞ
L jlðKqr0qÞY lmðy

0
q;j
0
qÞ, (24)

where Kq is the wavenumber in the sound space inside the qth fluid sphere.
According to the continuous conditions of the stress and displacement on the boundary of the

qth sphere, the following equations can be obtained:

ðP0ðr; r0Þ þ PSCðr; r0ÞÞ
��
r0q¼aq
¼ P

ðqÞ
in ðr

0
qÞjr0q¼aq

, (25)

1

ior0

qðP0ðr; r0Þ þ PSCðr; r0ÞÞ

qr0q

�����
r0q¼aq

¼
1

iorq

qP
ðqÞ
in ðr

0
qÞ

qr0q

�����
r0q¼aq

, (26)
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i.e.,

jl0 ðKaqÞ
X

L

GL00 þ C
ðqÞ

L0
h
ð2Þ

l0
ðKaqÞ þ

XN

s¼1
saq

X
L

C
ðsÞ
L TL00 jl0 ðKasÞ ¼ A

ðqÞ

L0
jl0 ðKqaqÞ, (27)

K

r0
j0l0 ðKaqÞ

X
L

GL00 þ C
ðqÞ

L0
h
ð2Þ0

l0
ðKaqÞ þ

XN

s¼1
saq

X
L

C
ðsÞ
L TL00 j

0
l0 ðKasÞ

2
64

3
75 ¼ Kq

rq

A
ðqÞ

L0
j0l0 ðKqaqÞ, (28)

where

TL00 ¼
X
L00

4pð�1Þlð�iÞlþl0þl00QL00 ðLL0Þh
ð2Þ

l00
ðKrqsÞY l00m00 ðp� yqs; pþ jqsÞ (29)

and rq is the medium density inside the qth fluid sphere. We can eliminate A
ðqÞ

L0
from the above two

equations and get

C
ðqÞ

L0
M
ð2Þ

l0
þ
XN

s¼1
saq

X
L

C
ðsÞ
L TL00M

ð3Þ

l0
¼ �M

ð1Þ

l0

X
L

GL00 ðq ¼ 1; 2; . . . ;NÞ, (30)

where

M
ð1Þ

l0
¼ jl0 ðKaqÞj

0
l0 ðKqaqÞ

Kq

rq

� j0l0 ðKaqÞjl0 ðKqaqÞ
K

r0
, (31)

M
ð2Þ

l0
¼ h

ð2Þ

l0
ðKaqÞj

0
l0 ðKqaqÞ

Kq

rq

� h
ð2Þ0

l0
ðKaqÞjl0 ðKqaqÞ

K

r0
, (32)

M
ð3Þ

l0
¼ jl0 ðKasÞj

0
l0 ðKqaqÞ

Kq

rq

� j0l0 ðKasÞjl0 ðKqaqÞ
K

r0
. (33)

Because the superscript q can be taken for any integer from 1 to N and l0 is variable from 0 to
1, formula (30) is a series of equations with infinite dimensions C

ðqÞ

L0
. If

Pn1
l¼0

Pl
m¼�l is close

enough to
P

L �
P1

l¼0

Pl
m¼�l depending on the calculation accuracy, the number of the

coefficients to be determined is ðn1 þ 1Þ2N. When the superscript q ranges from 1 to N and l0 from
0 to n1, we can obtain the same number of equations. The coefficients C

ðqÞ

L0
can be determined by

solving these equations, and the calculation precision can be improved by increasing n1. In this
paper, we have used the Gauss–Seidel iteration method to solve these equations.
According to expressions (18) and (19), the coefficients obtained from Eq. (30) bring the exact

solution for the scattering sound field of the combined system by accounting for all interactions
between any two spheres.
Every term in Eq. (30) has a specific physical meaning. The free term determines the scattering

of a spherical wave by a single sphere without considering the multiple scattering. The double
sums denote the interactions between any two spheres, in which h

ð2Þ

l00
ðKrqsÞ in the factor TL00 is

relative to the distance between the two spheres Oq and Os. And TL00 is decreased with increasing
Krqs, which indicates that the corresponding interactions become smaller.
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5. Numerical simulation and discussions

In Ref. [7] the backscattering of sound from two regularly arranged bubbles is studied
theoretically and experimentally. According to Ref. [7], the numerical results for the
backscattering from the pair of bubbles can be reported in terms of target strength (TS), which
is defined by

TS ¼ 10 log
jpT j

2

jpincj
2

R2
BR

� �
, (34)

where pT is the total scattered pressure at the receiver from the pair of bubbles, pinc is the incident
pressure at the bubbles and RBR is the distance from the bubbles to the receiver.
According to expressions (30) and (34), we calculate the target strength (TS) for the

backscattering from two bubbles of radius 585mm at a frequency of 110 kHz and variable d,
which is the distance from the combined beam axis to the center of each bubble. The computed
results, as shown in Fig. 4, were first validated by comparison to Fig. 8 in Ref. [7], which is
obtained by using an exact, closed-form solution derived from the multiple scattering series. The
oscillatory behavior is brought about by the interference of the waves scattered between the
bubbles, and the straight dashed line represents the coherent scattering from the two identical
bubbles without considering the interference between them. This result is in agreement with that
in Ref. [7] except that the discrepancy of about 1 dB between them, which is caused by numerical
0 5 10 15 20 25 30

-62

-61

-60

-59

-58

-57

Ta
rg

et
 S

tr
en

gt
h 

[d
B

]

Kd

Coherent scattering 

Fig. 4. Theoretical curve for backscattering from two bubbles of radius 585mm at a frequency of 110 kHz versus

variable distance d. The plot is generated by an analytical and exact method. It agrees very well with the theoretical

result in Ref. [7, Fig. 8].
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calculation with different methods, and may be improved further by increasing the calculation
accuracy.
Next, we calculate the target strength (TS) for the backscattering from two bubbles of radius

585mm with the distance R ¼ 0:02m and plot it versus variable frequency in Fig. 5. Here the
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Fig. 5. Theoretical curve for backscattering from two bubbles of radius 585mm versus variable frequency. Graph (b) is

a detail of graph (a).
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source and receiver are collocated at the same position and the distance from the source to set of
bubbles is R0 ¼ 0:58m. In Fig. 5 graph (b) is a detail of graph (a) and there is a small-amplitude
oscillation in the frequency range 50–150kHz in graph (b), which is coincident with Twersky’s
expression [11].
Besides, we also generate the target strength (TS) versus KR0 in Fig. 6. Here R0 is the distance

from the source to the set of bubbles, K ¼ 110 kHz and the distance between the two bubbles
R ¼ 0:02m. Fig. 6 shows that TS tends to a constant when R0 is bigger than 0:05m.
When the source and receiver are collocated at the same position, the two most important cases

for the scattering from two bubbles are the backscattering, in which the source is perpendicular to
the line along the centers of the two bubbles, and the end-on scattering, in which the source is on
the drawn-out line along the centers of the two bubbles. The first case has already been plotted in
Fig. 4, and we plot the second case in Fig. 7 at a frequency of 110 kHz, with the dashed line
representing the TS value as the end-on scattering by the nearer bubble from the receiver. In Fig. 4
the solid line oscillates around the dashed line, and at the larger separations (i.e., dX0:065m
dashed and solid lines coincide. Meanwhile, in Fig. 7 some difference between the two lines is still
observable at the large separations. Figs. 4 and 7 also show that the interactions between the two
bubbles become weaker as the distance R between the centers of the two bubbles increases. When
the distance R increases to some extent, the end-on scattering by the two bubbles will be close to
the scattering only by the nearer bubble from the receiver.
At last, the multiple scattering of a spherical acoustic wave from an arbitrary number of spheres

is further considered. For an arbitrary configuration of N fluid spheres, a set of N equations can
0 10 20 30 40
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Fig. 6. Theoretical curve for backscattering from two bubbles of radius 585mm versus variable distance R0 from the

source to set of bubbles at a frequency of 110 kHz.
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Fig. 7. Theoretical curve for end-on scattering from two bubbles of radius 585mm at a frequency of 14 kHz versus
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be obtained by using Eq. (30). The interactions between any two fluid spheres are taken
into account in these equations exactly and their coefficients are coupled through double
sums in the spherical wave functions. By truncating the infinite series in the equations
depending on certain calculation accuracy, and solving the coefficients matrix by using the
Gauss–Seidel iteration method, we can obtain the scattered sound field by the configuration of the
fluid spheres.
Here, we deal with three fluid spheres for an example. As shown in Fig. 8, three bubbles B1, B2,

and B3 with the same radius 585mm are aligned by separation of d. The source and receiver are
collocated at the same position R0 and the distance from the source to set of bubbles is still
R0 ¼ 0:58m.
For the three bubbles, three equations with respect to the scattering coefficients C

ðqÞ

L0
ðq ¼ 1; 2; 3,

and L0 � ðl0;m0ÞÞ can be got from Eq. (30). These are a set of equations with infinite dimensions.
Here, we truncate the infinite series with n1 ¼ 20. Thus the number of the scattering coefficients to
be determined is 3� 212. When l0 ranges from 0 to n1 for every equation, we can obtain the same
number of equations. The coefficients C

ðqÞ

L0
can be determined by solving these equations with the

Gauss–Seidel iteration method.
In order to compare the numerical result of three-bubble cluster with that of two-bubble one,

target strength (TS) in Eq. (34) is also used. However, here pT is the total scattered pressure at the
receiver from the three bubbles, pinc is the incident pressure at the bubbles B2 and B3, and RBR is
the distance from the bubble B2 or B3 to the receiver.
Theoretical curve of the target strength for backscattering from three bubbles of radius 585mm

at a frequency of 110 kHz versus variable distance d is plotted in Fig. 9, in which the straight
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dashed line represents the coherent scattering from the three identical bubbles without considering
the interference between them. On the whole, the behavior of the three-bubble cluster is similar to
the two-bubble one, but the amplitude of the fluctuations of the interactive scattering is now
somewhat greater.
6. Conclusions

Based on the bicentric expansion form of Green function in the spherical coordinates, we have
presented the kind of addition formulas for the spherical wave functions and solved the problem
of the multiple scattering of a spherical acoustic wave by an arbitrary number of fluid spheres. The
kind of addition formulas allows us to express the exact analytical solution as an infinite set of
equations, all referred to the center of each sphere. The accuracy of the solution will depend on
the accuracy used to determine the coefficients of the equations. Numerical calculations were
performed to validate the kind of addition formulas for the spherical wave functions. The exact
approach can also be extended to the cases of the sound scattering by an arbitrary number of
elastic spheres.
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Appendix A

In this appendix the bicentric expansion form of Green function of non-homogeneous
Helmholtz equation in the spherical coordinates is derived.
It is known that Green function of Helmholtz equation can be expressed as [9]

Gðra; rb;Rab;KÞ ¼ �
1

ð2pÞ3

Z
dq

eiqðra�rb�RabÞ

q2 � K2
. (A.1)

Substituting the following expansion form of plane wave into the integrand of expression (A.1):

eiqr cos z ¼ 4p
X1
l¼0

Xl

m¼�l

il jlðqrÞY �lmðyq;jqÞY lmðyr;jrÞ (A.2)

and applying the following integral formula [9]:

Ql00 ðll
0
Þ ¼

ZZ
Y �lmðyq;jqÞY l0m0 ðyq;jqÞY l00m00 ðyq;jqÞ sin yq dyq djq

¼ ð�1Þm
ð2l þ 1Þð2l0 þ 1Þð2l00 þ 1Þ

4p

� �1=2 l l0 l00

0 0 0

 !
l l0 l00

�m m0 �m00

 !
, ðA:3Þ
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we can obtain that

Gðra; rb;Rab;KÞ ¼ 8
X

L

X
L0

X
L00

ð�1Þlþ1ilþl0þl00QL00 ðLL0Þ

�Fll0l00 ðra; rb;Rab;KÞY lmðya;jaÞY
�
l0m0 ðyb;jbÞY

�
l00m00 ðyab;jabÞ, ðA:4Þ

where z is the angle between vector qðq; yq;jqÞ and vector rðr; yr;jrÞ, and the radial coefficient is
given by

Fll0l00 ðra; rb;Rab;KÞ ¼

Z 1
0

dq q2jlðqraÞjl0 ðqrbÞjl00 ðqRabÞ

q2 � K2
, (A.5)

where l, l0 and l00 are restricted by Wigner (3-j) symbol [13] and satisfy the following conditions:

l þ l0 þ l00 ¼ even ðnon-negativeÞ, (A.6)

jl � l0jpl00pl þ l0; jl00 � ljpl0pl þ l00; jl0 � l00jplpl0 þ l00. (A.7)

The integral in Eq. (A.5) has different results in the three non-overlapping regions ra þ rboRab,
rb þ Rabora and ra þ Raborb.
In the region ra þ rboRab, the integral in Eq. (A.5) can be calculated by applying the following

contour integral: I
C1

dqq2jlðqraÞjl0 ðqrbÞh
ð1Þ

l00
ðqRabÞ

q2 � ðxþ iyÞ2
¼ 0, (A.8)

where x and y ðy40Þ are the real numbers and the contour C1 is shown in Fig. A.1.
Because q ¼ xþ iy must be a first-order singular point of the integrand in Eq. (A.8), the

theorem of residues can be applied directly here.
Fig. A.1. Sketch of the contour of the non-overlapping region.
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Besides, considering the following condition:

q2jlðqraÞjl0 ðqrbÞh
ð1Þ

l00
ðqRabÞ

q2 � ðxþ iyÞ2
! 0 if q!1 (A.9)

and the parity characters of the spherical function jl and the second kind spherical Bessel
function and Eq. (A.6), we can obtain the following result from Eq. (A.8) by using the theorem
of residues,

Z 1
0

dq q2jlðqraÞjl0 ðqrbÞjl00 ðqRabÞ

q2 � ðxþ yiÞ2
¼

pi
2
ðxþ iyÞjlððxþ iyÞraÞjl0 ððxþ iyÞrbÞh

ð1Þ

l00
ððxþ iyÞRabÞ. (A.10)

Let K ¼ xþ iy, then

Fll0l00 ðra; rb;Rab;KÞ ¼
pi
2

KjlðKraÞjl0 ðKrbÞh
ð1Þ

l00
ðKRabÞ. (A.11)

Therefore, Gðra; rb;Rab;KÞ in the region ra þ rboRab can be obtained by (A.4).
It is easy to find that the difference between the regions rb þ Rabora and ra þ rboRab is only to

exchange the positions of ra and Rab, and the difference between the regions ra þ Raborb and
ra þ rboRab is the exchange of rb and Rab. Therefore, Gðra; rb, Rab;KÞ in the different regions can
be obtained.
Besides, the radial coefficient of the expansion forms in the region boundary is proved to be

continuous by applying the recursion method in Ref. [9].
Appendix B

The expansions for the spherical wave functions h
ð1Þ
l ðKr0ÞP

m
n ðcos y0Þ expðimj0Þ and

jlðKr0ÞP
m
n ðcos y0Þ expðimj0Þ have been obtained in Ref. [10] as follows:

jlðKr0ÞP
m
l ðcos yÞ expðimjÞ ¼

X
L0

X
p

fil
0
þp�l
ð2l0 þ 1Þfl0; jm0jgaðjmj; jm0j; p; l; l0Þ

�jpðKR12Þjl0 ðKr2ÞP
m0þm
p ðcos y12ÞPm0

l0 ðcos y2Þ

� exp½iðmþm0Þj12� expð�im
0j2Þg, ðB:1Þ

h
ð1Þ
l ðKr0ÞP

m
l ðcos yÞ expðimjÞ ¼

X
L0

X
p

fil
0
þp�l
ð2l0 þ 1Þfl0; jm0jgaðjmj; jm0j; p; l; l0Þ

�hð1Þp ðKr4Þjl0 ðKroÞP
m0þm
p ðcos y12ÞPm0

l0 ðcos y2Þ

� exp½iðmþm0Þj12� expð�im
0j2Þg, ðB:2Þ
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where, p ¼ l0 þ l; l0 þ l � 2; . . . ; l0 � l, ro ¼ minðR12; r2Þ, r4 ¼ maxðR12; r2Þ, and

aðjmj; jm0j; p; l; l0Þ ¼
ðl þ l0 � p� 1Þ!!ð2pþ 1Þ

ðl þ p� l0Þ!!ðl0 þ p� lÞ!!ðpþ l0 þ l þ 1Þ!!

�
Xr
j¼0

expf½ðl þ p� l0Þ=2þ jmj þ j�pig
r

j

 !
fl;�j � jmjgfl0; jmj þ j � pg,

ðB:3Þ

where, r ¼ p� jmj � jm0j, l0 � lpppl0 þ l, ðsÞ!! ¼ sðs� 2Þðs� 4Þ � � � 2 or 1, and ð0Þ!! ¼ ð�1Þ!! ¼ 1.
According to expression (5) and the following relationships [12]:

Y �lm ¼ ð�1Þ
mY l;�m, (B.4)

P�m
l ðxÞ ¼ ð�1Þ

m ðl �mÞ!

ðl þmÞ!
Pm

l ðxÞ (B.5)

and [13]

aðm;m0; p; l; l0Þ ¼ ð�1Þmþm0
ð2pþ 1Þ

ðl þmÞ!ðl0 þm0Þ!ðp�m�m0Þ!

ðl �mÞ!ðl0 �m0Þ!ðpþmþm0Þ!

� �1=2

�
l l0 p

m m0 �ðmþm0Þ

 !
l l0 p

0 0 0

 !
, ðB:6Þ

applying the character of Wigner ð3-jÞ symbol, we can then derive expansions (B.1) and (B.2) from
the addition formulas (14)–(16). Meanwhile, this will validate the kind of broad addition formulas
presented in this paper, based on the bicentric expansion form of Green function in the spherical
coordinates.
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